AI CHATBOT IMPLEMENTATION FOR NURUL JADID UNIVERSITY WEBSITE USING LSTM ALGORITHM
Abstract
The rapid advancement of technology has brought significant changes in various aspects of life, including the education sector. As an educational institution, Nurul Jadid University must adopt the latest technology to enhance efficiency and service, particularly in responding to the increasing volume of inquiries and information needs from the public and parents before enrolling their children. A chatbot, as part of Natural Language Processing (NLP) based on Artificial Intelligence (AI), is designed to interact with users through text or voice, providing fast, accurate, and continuous service. The Long Short-Term Memory (LSTM) algorithm in deep learning is utilized for text data prediction and classification. In this research, the data consists of tags, patterns, and responses obtained manually from the official Nurul Jadid University website and then preprocessed to develop the chatbot model. The core component of this model is the embedding layer, which assigns vector values to each word in the processed text data. The model training results indicate an accuracy of 99.32% and a loss of 12.57%, demonstrating that the model performs well without overfitting or underfitting, making it suitable for testing and deployment. Thus, the LSTM-based chatbot serves as an effective virtual assistant to help the public, prospective students, and current students access information more easily and efficiently.
References
[2] M. Ali Hafid and M. Ade Kurniawan, “Deteksi Akun Kaggle Bot Menggunakan Linear Regression,” Journal homepage: Journal of Electrical Engineering and Computer (JEECOM), vol. 6, no. 2, 2024, doi: 10.33650/jeecom.v4i2.
[3] N. Ningsih, N. A. S. Iskandar, S. Rizqiyah, and S. Sudriyanto, “Prediksi Churn Pelanggan Industri Telekomunikasi Menggunakan Metode Artificial Neural Network Berbasis Streamlit,” JUSTIFY : Jurnal Sistem Informasi Ibrahimy, vol. 3, no. 2, pp. 105–114, Dec. 2024, doi: 10.35316/justify.v3i2.5544.
[4] S. Sudriyanto, “Optimizing Neural Networks Using Particle Swarm Optimization (PSO) Algorithm for Hypertension Disease Prediction,” JEECOM Journal of Electrical Engineering and Computer, vol. 5, no. 2, 2023, doi: 10.33650/jeecom.v5i2.6759.
[5] R. Hidayad, R. A. Ronaldo, R. A. Prasetiyo, and S. A. Edho Wicaksono, “Optimasi Parameter Support Vector Machine Menggunakan Algoritma Genetika untuk Meningkatkan Prediksi Pergerakan Harga Saham,” COREAI: Jurnal Kecerdasan Buatan, Komputasi dan Teknologi Informasi, vol. 3, no. 1, 2022, doi: 10.33650/coreai.v3i1.3859.
[6] A. Ghazvini, N. Mohd Sharef, and F. B. Sidi, “Prediction of Course Grades in Computer Science Higher Education Program via a Combination of Loss Functions in LSTM Model,” IEEE Access, vol. 12, 2024, doi: 10.1109/ACCESS.2024.3351186.
[7] Y. Huo, M. Jin, and S. You, “LSTM-Based Framework for the Synthesis of Original Soundtracks,” IEEE Access, vol. 12, 2024, doi: 10.1109/ACCESS.2024.3372581.
[8] Y. Pande, “Project EngiBot: Engineering Insights through NLP- driven Chatbot,” Int J Res Appl Sci Eng Technol, vol. 11, no. 11, 2023, doi: 10.22214/ijraset.2023.56590.
[9] Dr. S. M. Patil, “STES Chatbot Using Flutter: STES Dialogic AI,” Int J Res Appl Sci Eng Technol, vol. 11, no. 11, 2023, doi: 10.22214/ijraset.2023.56507.
[10] Q. D. L. Tran and A. C. Le, “A deep reinforcement learning model using long contexts for chatbots,” in Proceedings of 2021 International Conference on System Science and Engineering, ICSSE 2021, 2021. doi: 10.1109/ICSSE52999.2021.9538427.
[11] M. Dhyani and R. Kumar, “An intelligent Chatbot using deep learning with Bidirectional RNN and attention model,” in Materials Today: Proceedings, 2019. doi: 10.1016/j.matpr.2020.05.450.
[12] P. Anki, A. Bustamam, H. S. Al-Ash, and D. Sarwinda, “Intelligent Chatbot Adapted from Question and Answer System Using RNN-LSTM Model,” in Journal of Physics: Conference Series, 2021. doi: 10.1088/1742-6596/1844/1/012001.
[13] D. Udayan, D. B, N. Krishna, T. Reddy, and L. Dinesh, “Conversational Chatbot for College Management Using LSTM,” SSRN Electronic Journal, 2022, doi: 10.2139/ssrn.4027039.
[14] N. Cannavaro, “Aplikasi Chatbot untuk Layanan Akademik Menggunakan Platform RASA Open Source dengan Fitur Two Stage Fallback,” Jurnal Ilmu Komputer dan Informatika, vol. 3, no. 1, 2023, doi: 10.54082/jiki.73.
[15] A. A. Chandra, V. Nathaniel, F. R. Satura, and F. D. Adhinata, “Pengembangan Chatbot Informasi Mahasiswa Berbasis Telegram dengan Metode Natural Language Processing,” Journal ICTEE, vol. 3, no. 1, 2022, doi: 10.33365/jictee.v3i1.1886.
[16] R. E. Alden, H. Gong, E. S. Jones, C. Ababei, and D. M. Ionel, “Artificial Intelligence Method for the Forecast and Separation of Total and HVAC Loads with Application to Energy Management of Smart and NZE Homes,” IEEE Access, vol. 9, 2021, doi: 10.1109/ACCESS.2021.3129172.
[17] R. Fitri, Pemrograman Basis Data Menggunakan MySQL. 2020.
[18] Z. H. Zhou, Machine Learning. 2021. doi: 10.1007/978-981-15-1967-3.
[19] Lolanda Hamim Annisa and Y. H. C. Pratama, “Implementasi Paradigma Interaksi Manusia & Komputer Pada di Era Society 5.0: Systematic Literature Review,” Technology and Informatics Insight Journal, vol. 1, no. 2, 2022, doi: 10.32639/tiij.v1i2.183.
[20] T. H. Binh, D. B. Son, H. Vo, B. M. Nguyen, and H. T. T. Binh, “Reinforcement Learning for Optimizing Delay-Sensitive Task Offloading in Vehicular Edge-Cloud Computing,” IEEE Internet Things J, vol. 11, no. 2, 2024, doi: 10.1109/JIOT.2023.3292591.
[21] E. Dwi Pratama, “Implementasi Model Long-Short Term Memory (LSTM) pada Klasifikasi Teks Data SMS Spam Berbahasa Indonesia,” The Journal on Machine Learning and Computational Intelligence (JMLCI), vol. 1, no. 2, 2022.
[22] A. M. A. Sai, O. Balamurali, M. Karthikeya, and S. Anand, “A Web-Based Chatbot for Indian Cities: A Comparison of CNN, ANN, and LSTM Models,” in 2023 14th International Conference on Computing Communication and Networking Technologies, ICCCNT 2023, 2023. doi: 10.1109/ICCCNT56998.2023.10307912.
[23] F. A. Al Farisi, R. S. Perdana, and P. P. Adikara, “Klasifikasi Intensi dengan Metode Ling Short-Term Memory pada Chatbot Bahasa Indonesia,” Jurnal Teknologi Informasi dan Ilmu Komputer, vol. 10, no. 7, 2023, doi: 10.25126/jtiik.1078000.
[24] A. W. Sugiyarto and A. M. Abadi, “Prediction of Indonesian palm oil production using long short-term memory recurrent neural network (LSTM-RNN),” in Proceedings - 2019 1st International Conference on Artificial Intelligence and Data Sciences, AiDAS 2019, 2019. doi: 10.1109/AiDAS47888.2019.8970735.
[25] Y. L. Hsueh and T. L. Chou, “A Task-oriented Chatbot Based on LSTM and Reinforcement Learning,” ACM Transactions on Asian and Low-Resource Language Information Processing, vol. 22, no. 1, 2022, doi: 10.1145/3529649.
[26] D. Apriliani, S. F. Handayani, and I. T. Saputra, “Implementasi Natural Language Processing (NLP) Dalam Pengembangan Aplikasi Chatbot Pada SMK YPE Nusantara Slawi,” Techno.Com, vol. 22, no. 4, 2023, doi: 10.33633/tc.v22i4.9155.
[27] J. Y. Lee, “Can an artificial intelligence chatbot be the author of a scholarly article?,” 2023. doi: 10.6087/kcse.292.
[28] N. Lhasiw, N. Sanglerdsinlapachai, and T. Tanantong, “A Bidirectional LSTM Model for Classifying Chatbot Messages,” in 16th International Joint Symposium on Artificial Intelligence and Natural Language Processing, iSAI-NLP 2021, 2021. doi: 10.1109/iSAI-NLP54397.2021.9678173.
[29] M. Ilyas Tri Khaqiqi, N. H. Harani, and C. Prianto, “Performance Analysis and Development of QnA Chatbot Model Using LSTM in Answering Questions,” The Indonesian Journal of Computer Science, vol. 12, no. 3, 2023, doi: 10.33022/ijcs.v12i3.3249.
[30] M. A. Nugroho, A. Damayanti, M. F. Rifai, and S. Windarti, “Pengembangan Aplikasi Qna Untuk Pendaftaran Mahasiswa Baru Stmik Akakom,” Journal of Information System Management (JOISM), vol. 3, no. 1, 2021, doi: 10.24076/joism.2021v3i1.408.